ERASMUS: Course Probability and Statistics

Part II: Statistics - summary

collection, analysis and interpretation of data of experiments

statistical population

a set of entities concerning which statistical inferences are to be drawn; totality of the observations with which we are concerned

random sample

finite subset taken from the population for investigation; must be representative of the population

Descriptive statistics: summarize the population data by describing what was observed in the sample (collected data) numerically or graphically.

Inferential statistics: find conclusion (inferences) about the population using sample data. These inferences may take the form of:

- answering yes/no questions about the data (hypothesis testing),
- estimating numerical characteristics of the data (estimation),
- describing associations within the data (correlation),
- modeling relationships within the data (regression),

Basic numerical descriptors:

- measures the location or central tendency in the data:
 - o **sample mean** (arithmetic, geometric, harmonic) (arithmetic: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$)
 - o **median** (numeric value separating the higher half of a sample from the lower half), **quartiles**
 - o **mode** (the value that occurs the most frequently in a data set)
- measures of the variability or spread:
 - o sample variance $(s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})^2)$
 - o **standard deviation** (the positive square root of the sample variance)
 - o sample range $(Max(x_1,...,x_n) Min(x_1,...,x_n))$

data are a **sample** of observations that have been selected from some larger **population** characterized by **probability distribution** (with population parameters μ , σ , coefficient of variation = $\frac{\mu}{\sigma}$)

Presentation of data

- series, stem-and-leaf, tabular frequencies
- **histogram** (a graphical display of tabular frequencies, shown as adjacent rectangles. Each rectangle is erected over an interval, with an area equal to the frequency of the interval)

9

EXCEL: **CZĘSTOŚĆ - frequency :** Tablica_dane – data; Tablica_przedziały – intervals (class); (turk. SIKLIK)

Relationship between a **population** and a **sample**

Example;

For a given data (Erasmus-data1.xls) calculate sample mean, median, mode, variance, standard deviation, range. Form a tabular frequencies and histogram. Make a graph of a density function of normal distribution which estimates the sample

Point estimation

 θ – a population parameter of a random variable X with a given density function f(x) (ex. mean or standard deviation).

 $x_1,...,x_n$ - values of observations of a random variable X – a sample from a population \Rightarrow we can consider these values as random variables $X_1,...,X_n$ (random sample of size n from X)

Definition:

A function of a random sample of size n $\theta(X_1,...,X_n)$ is called *statistic*. If statistic $\theta(X_1,...,X_n)$ is used for estimation of some population parameter (single value) is called a *point estimator*. A *point estimate* of some population parameter is a single numerical value of a statistic $\theta(X_1,...,X_n)$.

(one parameter can have more estimators)

Reasonable point estimates of basic parameters are as follows:

- the **mean** μ of a single population: \bar{x} (sample mean), median
- the **variance** (standard deviation) of a single population: sample variance
- the **proportion** p of items in a population that belong to a class of interest: the sample proportion $\frac{x}{n}$, where x is the number of items in a random sample of size n that belong to the class of interest (Bernoulli trials)

Example;

Suppose that the random variable X is normally distributed with an unknown mean . Calculate a point estimator of the unknown population **mean** using estimators: sample mean, median and a point estimator of the unknown population **standard deviation** using sample standard deviation

Sample: 25, 30, 29, 31, 33

Solution: $\bar{x} = 29.6$, median = 29, $\sigma = 8.8$

Statistical intervals. Interval estimation.

Definition:

Let θ be a population parameter to be estimated. The interval (L_1, L_2) is called a $[100 \cdot (1-\alpha)]\%$ confidence interval for θ if $P(L_1 < \theta < L_2) = 1 - \alpha \cdot 1 - \alpha$ is called a **confidence level** (usually expressed as a percentage)

Example;

Let $\sigma = 2$ be a standard deviation of a normal distribution $N(\mu, \sigma^2)$ with unknown μ .

Let $\bar{x} = 34.1$ be a sample mean (n = 16). Then

$$P\left[u(\frac{\alpha}{2}) < \frac{\bar{x} - \mu}{\sigma}\sqrt{n} < u(1 - \frac{\alpha}{2})\right] = 1 - \alpha$$

thus

Calculate limits of confidence interval assuming $\alpha = 0.05$.

Solution:

u(0.025) = -1.96,

u(0.975) = -u(0.025) = 1.96

EXCEL: ROZKŁAD.NORMALNY.ODW – X of normal distribution $N(\mu, \sigma^2)$ (turk.

NORMTERS)

prawdopodobieństwo – probability; średnia (μ)– mean; odchylenie_std (σ) – standard deviation.

EXCEL: UFNOŚĆ – limits of confidence interval (turk. GURENIRLIK)

alfa – (α) ; odchylenie_std (σ) – standard deviation; wielkość – size of a sample

UFNOŚĆ(0.05, 2, 16) = 0.98

Example;

Let x = 344 be a sample mean and s = 31.13 be a sample

standard deviation (n = 10) of a normal distribution $N(\mu, \sigma^2)$ with unknown μ and σ . Then, confidence interval is given by limits:

$$\bar{x} \pm t(\alpha, n-1) \frac{s}{\sqrt{n-1}}$$
, where $t(\alpha, n-1)$ is a quartile of Student's distribution.

Calculate limits of confidence interval assuming α =0.05.

$$t(0.05, 9) = 2.26$$

EXCEL: **ROZKŁAD.T.ODW** – **X of Student's distribution** (turk. TTERS) prawdopodobieństwo – probability;

stopnie swobody (n-1) – degree of freedeom.

ROZKŁAD.T.ODW(0.05, 9) = = 2.26

Problem:

Parameter **X** has a $N(\mu, \sigma^2)$ distribution. How many elements should have a sample for length of a confidential interval = 2L?

$$2u(1-\frac{\alpha}{2}) < 2L \implies n > \left(\frac{u(1-\frac{\alpha}{2})\cdot\sigma}{2}\right)^2$$
, where u – density function of **N(0,1)**.

Example;

Let $\sigma = 2$, u(0.975) = 1.96. assuming L = 0.5 we get n > 61.

<u>Statistical hypothesis</u>: assumption about some aspects of the statistical behavior of population, related to values of statistical parameters or properties of distribution

Statistical hypothesis testing: methods for making statistical decision using experimented data

The hypothesis testing procedure:

- formulation a null hypothesis H_0 and alternative H_1 hypothesis
- deciding which test is appropriate, and stating the relevant test statistic T (usually with known distribution)
- \bullet calculate from the observations the observed value of the test statistic T
- decide to either **fail to reject** the null hypothesis or **reject** it in favor of the alternative
- the decision rule is to reject the null hypothesis \mathbf{H}_0 if the observed is in the critical region, and to accept or "fail to reject" the hypothesis otherwise.

• either the null hypothesis is rejected, or the null hypothesis cannot be rejected at that significance level (which however does not imply that the null hypothesis is *true*).

α (significance level of a test): probability of incorrectly rejecting the null hypothesis.

p-value: probability of incorrectly rejecting the null hypothesis (the smallest level of significance that would lead to rejection of the null hypothesis with the given data). One often rejects a null hypothesis if the *p-value* is less than α

Hypothesis Tests on the Mean

Assume that X has a normal distribution $N(\mu, \sigma^2)$ with unknown μ, σ and μ_0 is a specified constant. We wish to test the hypotheses:

- null hypothesis $\mathbf{H}_0: \boldsymbol{\mu} = \boldsymbol{\mu}_0$
- alternative hypotheses $\mathbf{H}_1: \mu \neq \mu_0$, $\mathbf{H}_2: \mu > \mu_0$

We use a test statistic $t = \frac{x - \mu_0}{s} \sqrt{n-1}$ which has a t-Student distribution with (n-1) degree of freedom

Example (hypothesis Tests on the Mean):

X has a normal distribution $N(\mu, \sigma^2)$. Let x = 13.83 be a sample mean and s = 3.348 be a sample standard deviation (n = 24). Assume $\mu_0 = 15.5$, $\alpha = 0.05$. We examine null hypothesis $H_0: \mu = \mu_0$ with alternative hypotheses $H_1: \mu \neq \mu_0$ and $H_2: \mu > \mu_0$

Solution:

test t = -2.387

•
$$\mathbf{H_0}$$
: $\boldsymbol{\mu} = \boldsymbol{\mu_0}$ vs. $\mathbf{H_1}$: $\boldsymbol{\mu} \neq \boldsymbol{\mu_0} \Rightarrow$
 $t(1 - \frac{\alpha}{2}, n - 1) = 2.068 \Rightarrow$

accept. region = [-2.068, 2.068] \Rightarrow null hypothesis **is rejected**, the alternative $\mathbf{H}_1: \mu \neq \mu_0$ hypothesis **is accepted**

• $\mathbf{H_0}: \boldsymbol{\mu} = \boldsymbol{\mu_0} \text{ vs. } \mathbf{H_1}: \boldsymbol{\mu} > \boldsymbol{\mu_0} \Rightarrow t(1-\alpha,n-1) = 1.7138 \Rightarrow$ accept. region = $[-\infty, 1.7138] \Rightarrow$ null hypothesis **cannot be rejected**

EXCEL: **ROZKŁAD.T.ODW** – **X of Student's distribution** (turk. TTERS)

prawdopodobieństwo – probability; stopnie swobody (n-1) – degree of freedeom.

Pearson's chi-square test: is used to establish whether or not an observed frequency distribution differs from a theoretical distribution. A null hypothesis is formulated that the frequency distribution of certain events observed in a sample is consistent with a particular theoretical distribution.

The test statistic asymptotically approaches a χ^2 distribution. The value of the test-statistic is

given by
$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

- O_i : an observed frequency;
- E_i : an expected (theoretical) frequency;
- *n* : the number of outcomes of each event.
- $\chi^2_{\alpha,n-1}$: a critical value

Example:

		midpoints	observed	theoretical		
	classes	of classes	data	data	chi-square	critical value $\chi^2_{\alpha,n-1} = 16.918$
	4	3,75	0	0,317593	0,317593	
	4,5	4,25	2	0,932705	1,221308	ROZKŁAD.CHI.ODW
	5	4,75	1	2,184458	0,642238	Prawdopodobieństwo 0,05
	5,5	5,25	5	4,08009	0,207406	Stopnie_swobody 9
	6	5,75	8	6,077459	0,608176	
	6,5	6,25	5	7,219394	0,682288	
	7	6,75	7	6,839207	0,00378	Zwraca odwrotność jednośladowego prawdopodobieństwa rozkładu chi-k
	7,5	7,25	3	5,166985	0,908813	and a sum of the sum o
	8	7,75	4	3,113113	0,252663	- I II.
	8,5	8,25	3	1,495819	1,51259	Prawdopodobieństwo - prawdopodobieństwo związane z d od 0 do 1 włącznie.
	9	8,75	0	0,573178	0,573178	
_			38		6,930033	(2) Wynik formuły = 16,91896016
						17,111,131,137

EXCEL: **ROZKŁAD.CHI.ODW** – **X** of χ^2 distribution (turk.)

prawdopodobieństwo – probability; stopnie swobody (n-1) – degree of freedeom.

Conclusion: the value of the statistic (6,93) is not in a critical region ([16.918, ∞]). we accept a null hypothesis that frequency distribution of observed data in a sample is consistent with a theoretical distribution $N(\mu, \sigma^2)$ ($\mu = 6.38$, $\sigma = 1.05$).

EXCEL: **TEST.CHI** – **p-value of Person**- χ^2 **test** (turk.)

zakres bieżący – observed frequency; zakres przewidywany – theoretical frequency.

p-value = 0.732 (> 0.05)

Regression analysis

- modeling and analysis several variables
- relationship between a dependent variable and independent variables (how the typical value of the dependent variable changes when any one of the independent variable is varied)
- used in prediction
- understand which among the independent variables are related to the dependent variable

Regression model $y = f(x, \beta)$. Method of least squares: $\sum_{i} (y_i - f(x_i, \beta))^2 \rightarrow \min$

 $\underline{R^2 - coefficient\ of\ determination}$: information about the goodness of fit of a regression model . $R^2 \in [0, 1]$.

